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Abstract

The Philips automatic telephone switchboard and directory information system PADIS provides a natural-language
user interface to a telephone directory database. Using speech recognition and language understanding technologies,
the system offers phone numbers, fax numbers, email addresses, and room numbers as well as direct call completion
to a desired party.

In this paper, we present the underlying probabilistic framework, the system architecture, and the individual modules
for speech recognition, language understanding, dialogue control, and speech output. In addition, we report results
on performance and user behaviour obtained from a field test in our research lab with a 600-entry database.

We derive a new maximum-a-posteriori decision rule which incorporates database knowledge and dialogue history
as constraints in speech recognition and language understanding. It has improved speech understanding accuracy by
19% (in terms of concept error rate), and reduced attribute substitution errors (e.g. recognition of a wrong name) by
38%.

The decision rule is implemented in a multi-stage approach as a combination of state-of-the-art speech recognition,
partial parsing with an attributed stochastic context-free grammar, and an N-best algorithm which is also described
in this paper.

The system conducts a flexible mixed-initiative dialogue rather than using a rigid form-filling scheme, and incorpo-
rates database knowledge to optimize the dialogue flow.

Zusammenfassung

PADIS, das automatische Telefonauskunftsystem von Philips ist eine natürlichsprachliche Benutzerschnittstelle zu
einer Telefondatenbank. Unter Einsatz von Spracherkennungs- und Sprachverstehenstechnologie bietet das System die
Möglichkeit zur Abfrage von Telefon-, Fax-, und Zimmernummern, Email-Adressen, sowie eine direkte Rufweiterleitung
zu einem gewünschten Anschluß.
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In diesem Artikel präsentieren wir das zugrundeliegende statistische Framework, die Systemarchitektur, und die
einzelnen Funktionsblöcke Spracherkennung, Sprachverstehen, Dialogsteuerung und Sprachausgabe. Weiterhin stellen
wir Ergebnisse zu Systemperformance und Benutzerverhalten vor, die in einem Feldtest in unserem Forschungslabor
mit einer 600 Einträge großen Datenbank ermittelt wurden.

Wir leiten eine neue Maximum-a-posteriori-Entscheidungsregel ab, welche sowohl das Datenbankwissen als auch
den bisherigen Dialogverlauf als Randbedingungen in Spracherkennung und -verstehen einbezieht. Es ergibt sich eine
Verbesserung des Sprachverstehens von 19% (gemessen als Konzeptfehlerrate), sowie eine Reduktion von Attribut-
Substitutionsfehlern (etwa Fehlerkennung eines Namens) von 38%.

Die Entscheidungsregel wurde in einem mehrstufigen Ansatz implementiert, einer Kombination von Spracherken-
nung, partiellem Parsing mit einer attributierten, stochastischen, kontextfreien Grammatik, und einem N-best-
Algorithmus, welcher ebenfalls in diesem Artikel beschrieben wird.

Das System führt einen flexiblen “Mixed-initiative”-Dialog anstatt ein starres Form-Filling-Schema zu verfolgen und
verwendet Datenbankwissen zur Optimierung des Dialogflusses.

Keywords:

directory information; speech understanding; speech recognition; natural-language understanding; mixed-initiative
dialogue; database constraints; dialogue history; N-best; stochastic context-free grammar; attributed grammar; user
behaviour
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1 Introduction

The use of automatic speech recognition for telephone
switchboard systems offers a large potential for automa-
tion and increased functionality. For such an automatic
system to be accepted by the user, it is crucial that every-
body can use it without prior instructions. Thus, the user
should be able to talk to the system in a natural way, very
much like she or he would talk to a human operator1.

We have developed a speaker-independent continuous-
speech prototype of an automatic telephone switchboard
system to be used over the telephone. This automated
switchboard is being field-tested in our research lab and
offers telephone numbers, fax numbers, email addresses,
and – if explicitly agreed by the subscriber – private phone
numbers of about 600 employees and abstract units of our
lab. Its main application, however, is direct call comple-
tion to the desired party. The system is designed to replace
the written telephone lists that had been used before and
to handle most of the internal phone calls. The prototype
has been used in our lab since March 1996.
Figure 1 shows an example of a PADIS dialogue.

System: Hello, this is PADIS. How can I help you?
Caller: I’d like to talk to Mike.
System: So, you want to talk to Mike Anderson?
Caller: Yes, please.
System: The extension 506 is busy right now.

Can I do anything else for you?
Caller: Oh yes. Can you give me the email address

of Mary, please?
System: Which Mary do you want the email address

of?
Caller: Uh, she is in the speech recognition group.
System: So you want the email address of Mary White

from the speech recognition group?
Caller: Exactly.
System: The email address is . . .

Figure 1: Example dialogue.

The PADIS system is based on the Philips automatic
inquiry system technology that also has been used in our
train timetable information system [3]. Besides improve-
ments in the basic technologies (speech recognition and
speech understanding), new technologies were introduced
to meet the additional requirements of a directory infor-
mation application. The most important of these require-
ments is the flexible and scalable handling of large tele-
phone databases: On the one hand, it must be possible
to modify the database without affecting the rest of the
system; on the other hand, the database contains a lot of
additional information that can be exploited to improve
speech understanding and to optimize the flow of the di-
alogue. To meet both these requirements, the database is

1from here on, we have decided, for simplicity’s sake, the caller
to be a male.

kept as a separate entity which interacts with the other
system components.

This paper is organized as follows:
Section 2 describes the overall architecture of the PADIS
system. Then we introduce a probabilistic model for an in-
teractive dialogue system which includes database knowl-
edge and dialogue history. This model and the resulting
decision rule are presented in section 3. In section 4, the
speech recognizer used in the system is explained. Sec-
tion 5 deals with the speech understanding component of
the system and explains the implementation of database
constraints. The dialogue control module is explained in
section 6. After a short description of the speech output
technology in section 7, section 8 reports some results and
experiences from the field test.

2 System Architecture

Our automatic inquiry system consists of a speech rec-
ognizer, a natural-language understanding component, a
dialogue control module, and speech output capabilities.
These components are organized in a pipeline architecture
with a superordinate control module that handles the tele-
phone interface and controls the data flow between the
modules (see figure 2). In this way, the individual mod-
ules can be maintained and exchanged independently of
each other.

Control
Speech

Recognition Understanding
Language Dialogue Speech

Output

Telephone Network

Network Interface and I/O Control

Database

Figure 2: System architecture of PADIS.

A requirement for a practical system is that the
database can be modified, updated, and maintained by
a system manager who has no knowledge of a speech un-
derstanding system. Internal data files such as recogni-
tion lexica and language models should not have to be
accessible to the system manager. Thus, the database is
kept separate from the other domain-specific knowledge
sources such as the speech-understanding grammar, lan-
guage models, and dialogue description.

We use a statistical approach for the speech under-
standing process that integrates speech recognition and
language understanding. In [18], we derived a decision
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rule for speech understanding which is also capable of in-
corporating the additional knowledge we have at hand in
the form of the telephone directory database. Before we
describe the four modules of our system, we will explain
this probabilistic framework, which significantly influences
the design of the speech recognizer and the language-
understanding module.

3 Probabilistic Framework

It is well known that the error probability of a pattern
recognition system can be minimized if it is based on a
maximum-a-posteriori (MAP) probability criterion. In
this section, we want to derive a MAP criterion for speech
understanding that integrates all involved parts and com-
ponents such as the recognizer and the telephone database.

Our system is based on a speech production model as
shown in figure 3: We assume that the user has a cer-
tain dialogue goal G in talking to the system, which may
be to get connected to some person or to get a telephone
number, room number, or e-mail address. We further as-
sume a cooperative user, i.e, G is not out of the domain
of our system and does not change during the course of a
dialogue.

State  SGoal  G

Information
Item Set  I

Word

Dialogue

Sequence  W

Observed
 Speech  O

Figure 3: Production model of a user’s utterance.

In every utterance, the user states a set of information
items I, which is determined by his goal G and the current
dialogue state S. S includes the system’s current question
and the system’s current belief on what has already been
stated by the user. From the system’s point of view, the
dialogue state S can be directly observed, while G is a
hidden variable. I is then cast into a sequence of words
W , i.e. after deciding what to say, the user chooses how to
say it. The utterance is finally observed by our system as
a sequence of acoustic feature vectors O. All symbols used
in the following formalism are summarized in table 1.

Note that the user’s goal G and the dialogue state S
are modelled to be independent of each other, while in-

deed they are not, but rather coupled via the information
collected in previous turns.

Table 1: Summary of symbols with examples.
Sym. Explanation Example

G dialogue goal { talk to M. Jones }
GLM LM-modelled part { talk to }
GDB DB-modelled part { M. Jones }
S system status current belief = { Martin }

question = Which Martin ?
W word sequence give me Doctor Jones please

WT word seq. templ. give me <title><name> please

I inform. item set { @request=connect,
@title=Doctor,
@name=Jones }

IT inform. template { @request=connect,
@title=<title>,
@name=<name> }

O acoustic obs. (observed feature vectors)

3.1 MAP Criterion for Speech Under-
standing

We define the speech understanding task as, for every ut-
terance, finding the information item set Î which most
probably generated our acoustic observation O, given
the system’s current state S (maximum-a-posteriori cri-
terion):

Î = arg max
I
P (I|OS) (1)

= arg max
I
p(IOS)/p(OS)

Since p(OS) is independent of I, it does not contribute
to the maximization and can be omitted. Introducing the
underlying word sequence W and the (unknown) dialogue
goal G, we get:

Î = arg max
I

∑
W,G

p(OWISG)

= arg max
I

∑
W

p(O|W ) ·
∑
G

P (WISG)

For P (WISG), we assume a simple dependence between
(W , I, G) and S as follows: If the hypothesized informa-
tion item set I contradicts the system state S built up so
far, P (WISG) is simply 0, since we assume a coopera-
tive user who does not change his goal during the course
of the dialogue. (A correction of an information item is
not considered a contradiction.) If on the other hand I
is consistent with S, we assume no further dependence,
i.e. P (WISG) = P (WIG) · P (S). This assumption ig-
nores the fact that users tend to answer the question they
are asked by the system (which is included in S).

With the consistency operator δX,Y ,

δX,Y =
{

1 if X is consistent with Y
0 otherwise
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we can write P (WISG) as:

P (WISG) = P (WIG) · δI,S δI,I · α(S)

δI,S tests whether I contradicts any information the sys-
tem already knows for sure. For example, if the last name
has explicitly been confirmed by the user, an information
item set I that contains a different last name is inconsis-
tent.

δI,I tests whether the currently hypothesized informa-
tion item set contradicts itself, e.g. if it contains two dif-
ferent last names. (Such hypotheses may well occur if a
name can be used as a first name as well as as a last name.)

α(S) is a normalization constant which is independent
of I, and can be omitted since it does not contribute to
the maximization.

Now we apply the usual maximum approximation,
i.e. we replace the sum over W by the maximum2:

Î ≈ arg max
I

{
max
W

p(O|W ) ·
∑
G

P (WIG) · δI,S δI,I
}

3.2 Modelling the Goal’s Distribution

We decompose the goal G into two parts (subsets) which
have to be evaluated differently: the language-model goal
GLM and the database goal GDB . They are disjoint, and
their priors are assumed to be independent, i.e.

P (G) = P (GLM ) · P (GDB) (2)

With this, we obtain∑
G

P (WIG) =

=
∑
G

P (WI|G)P (G)

=
∑
GDB

∑
GLM

P (WI|GLMGDB)P (GLM )P (GDB)

The language-model goal GLM is the part of the goal for
which the prior P (GLM ) is not explicitly available but im-
plicitly modelled by the language model. If, for example,
the goal G was to talk to a certain person, GLM would
be the request for call completion and GDB the desired
person. We get:∑
G

P (WIG) =
∑
GDB

∑
GLM

P (WIGLM |GDB) · P (GDB)

=
∑
GDB

P (WI|GDB) · P (GDB)

On the other hand, for the database goal GDB ,
the a-priori distribution P (GDB) is explicitly available.

P (GDB) reflects how often a person is asked for and is
0 if the current hypothesis for G refers to a non-existing
database entry.

However, we still need a language model that models
the sentence structure. For example, it does not model
whom to talk to, but how the person is specified: by first
and last name, by title and last name, by first name only,
etc.

This calls for a language model that provides prior
probabilities for word-sequence and information-item tem-
plates, in which all GDB-related words are replaced by
a placeholder as in "Ah, yes, I would like to talk
to <first-name> <last-name>, please". The word se-
quence template for W will be called WT , and the corre-
sponding information item template for I will be named
IT . Thus,

∑
G

P (WIG)

=
∑
GDB

P (WIWT IT |GDB) · P (GDB)

=
∑
GDB

P (WI|WT ITGDB) · P (WT IT |GDB) · P (GDB)

Since (W, I) is uniquely determined by (WT , IT , GDB),
P (WI|WT ITGDB) is either 1 or 0 depending on whether
filling in the templates in WT and IT from the hypoth-
esized GDB leads to (W, I) or not. Using our matching
operator, we abbreviate P (WI|WT ITGDB) as δWI,GDB .
Furthermore, P (WT IT |GDB) can be assumed indepen-
dent of GDB since – at least in our system – all GDB
are of the same type. We finally obtain:

∑
G

P (WIG)

= P (WT IT ) ·
∑
GDB

δWI,GDB · P (GDB),

where P (WT IT ) is the template language model. It im-
plicitly models the prior distribution of the language-
model goal GLM . For example, to compute the prior
probability for the event that a caller wants an e-mail ad-
dress, we have to sum up P (WT IT ) for all possible word
sequences and corresponding information item sets that
contain the request “e-mail address”. The structure of
P (WT IT ) is closely related to the speech understanding
component and will be discussed in more detail in section
5.
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3.3 Decision Rule

We obtain the final decision rule:

Î ≈ arg max
I

{
max
W

p(O|W )︸ ︷︷ ︸
acoustics

·P (WT IT )︸ ︷︷ ︸
grammar

(3)

·
∑
GDB

δWI,GDB · P (GDB)︸ ︷︷ ︸
database knowledge

· δI,S δI,I︸ ︷︷ ︸
consistency
constraints

}

The rule contains long-span dependencies that make
a direct evaluation (e.g. by an integrated Viterbi beam
search) prohibitive. To overcome this practical problem,
we chose a multi-stage approach for our real-time imple-
mentation. The incoming speech is processed by a pipeline
of processing stages, in which each stage acts as a filter to
reduce the search space for the subsequent stage while ap-
plying as much knowledge as feasible at that point. The
further the search space gets reduced, the more complex
knowledge sources can be incorporated. This means in
particular, the output of every stage except the last must
be a set of alternative hypotheses rather than a single one.

4 Speech Recognition

The first module in the signal processing pipeline is a
speaker-independent continuous-speech recognizer. It is
a state-of-the-art HMM recognizer that processes spon-
taneous fluently-spoken natural-language utterances over
the telephone in real-time. In terms of our decision
criterion, the recognizer provides the acoustic likelihood
p(O|W ).

The recognizer consumes the very most part of CPU
processing time. The computational effort of all other
components is negligible in comparison.

4.1 Acoustic-Phonetic Modelling

The recognizer uses 4461 strongly-tied triphones that
share 703 tied states. The state emission probabilities are
modelled as mixtures of Gaussian densities. The feature
vector consists of 12 cepstrum coefficients plus deltas, de-
rived from a Mel-spaced telephone-bandwidth filterbank
(MFCC).

The acoustic models have been trained on a large Ger-
man spontaneous-speech database that we have recorded

2In the practical implementation, the maximization over W is
restricted to word sequences whose interpretation is I (for all other
W , P (WIG) is zero).

over the telephone during the field test of our train sched-
ule information system. This corpus comprises 33081 ut-
terances, which amount to a total of about 12 hours of
actual speech.

We use a rule-based state-tying approach based on the
concept of diphone-like units [13]. For our German task,
this performs comparably to what we achieved with data-
driven bottom-up tying [21, 5]. In addition, it allowed us
to synthesize 958 of the 1985 triphones in our (PADIS)
recognition lexicon that have not been observed in the
(train schedule) training corpus.

4.2 Word-Graph Interface

Rather than outputting a single best sentence, the rec-
ognizer creates a set of plausible sentence hypotheses.
The final decision is deferred to the subsequent language
understanding module, which incorporates the additional
knowledge sources.

The sentence alternatives are represented as a compact
word graph [14]. A word graph (see figure 4) is a directed
acyclic graph whose nodes correspond to points in time,
while its arcs represent plausible word hypotheses. Each
arc is assigned the word hypothesis’ acoustic score. Every
path through the graph is a sentence hypothesis. The sum
of all scores on a path is the total negative log-likelihood
of the respective word sequence, − log p(O|W ).

321 4 5 6

42.8

87

emailthewantI of Martin Jones

Samuel
Marvin

John

Johnson

8.8 18.1 12.6 26.1 14.2 23.3 36.1

22.2
40.6

39.0

Figure 4: Example word graph.

We use the time-conditioned tree copies method to cre-
ate the word graph [14]. In this algorithm, word-graph
generation is implemented as a two stage process. The first
stage, the word-hypotheses generator, performs a time-
synchronous Viterbi beam search with a tree-organized
lexicon. A search tree is started for every time frame.
For every frame, all ending words are collected and trans-
ferred to the second stage, the word-graph optimizer. It
combines these word hypotheses into a pruned word graph.

We have also experimented with another method to cre-
ate word graphs that uses word-conditioned tree copies as
described in [11]. The CPU effort for both methods turned
out to be nearly the same in our task, which is in line with
the results in [15].
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4.3 Language Model

Although the recognizer only has the task to provide word
hypotheses rather than to decide on the best path, it is
still crucial to use a language model to properly focus the
beam search. A language model is also used to prune
the word graphs in order to keep the word-graph density
low. The word-graph density has a direct impact on the
computational requirement of the subsequent speech un-
derstanding stage.

We use a bigram model that is independent of dia-
logue history and database. All database terminal sym-
bols (words directly referring to a database entry, such
as last names) are modelled by word categories with flat
distributions within each category [12].

4.4 Vocabulary Generation

The recognition lexicon is created by an automatic proce-
dure. First, a word list is composed of:

• the database terminals (e.g. all last and first names,
titles, etc. occuring in the database);

• the terminal symbols of our speech-understanding
grammar (about 140);

• an additional manually-maintained list of about 270
words including popular out-of-vocabulary words that
could cause misrecognitions, special words for non-
speech sounds (like hesitations), and often-used pro-
nunciation variants of terminals.

Then, for every word in the word list, a phonetic
transcription is generated automatically using large back-
ground lexica. Words whose transcriptions cannot be
found in these lexica are transcribed using a statistical
method [4]. For foreign names that are regularly mis-
pronounced or cannot be transcribed automatically, we
permit pronunciation variants to be directly stored in the
telephone directory database.

During vocabulary generation, database terminals are
tagged in the recognition lexicon. E.g., the lexicon entry
for the first name Sally is Sally:fname. If a name can
be a first as well as a last name, two differently tagged
homophones will be generated. The advantage is that the
subsequent speech-understanding stage’s parser can iden-
tify database terminals by the tag without referring to the
database or having to search large terminal lists.

5 Language Understanding

The language understanding component computes the in-
formation item set I from an utterance’s word graph. It
actually has two tasks:

• to find the most probable path through the graph,
and

• to compute its meaning.

For finding the best path, language understanding con-
tributes the template language model P (WT IT ), the con-
sistency tests δI,S and δI,I , and the integration of the
database knowledge.

For computing the meaning, language understanding
contributes a parser. Since we have to deal with spon-
taneous natural language, we cannot expect the input to
be grammatically correct. Recognition errors may also
account for input hypotheses that are not completely
parsable. Therefore, a very robust parser which can han-
dle erroneous or grammatically incorrect input is needed.

These two tasks are in principle conceptionally indepen-
dent, but practically dependent on each other: First, we
take over the internal structure of the template language
model from the parsing grammar, and second, consistency
tests and database integration are performed on the mean-
ing level.

5.1 The Concept Parser

Since we are only interested in an utterance’s semantic
information I, the system does not have to understand
the semantics of every word in the input, but only those
phrases which contain task-relevant information. These
meaningful phrases (we call them concepts) are usually
well structured and can be modelled by a simple context-
free grammar [16, 8, 3]. Using a partial-parsing strategy,
the concepts can be identified in the input whereas mean-
ingless sequences (fillers) do not affect the parse.

The individual concepts are modelled by an attributed
stochastic context-free grammar with a distinct start sym-
bol for each concept. A top-down chart parser is used to
search the word graph for meaningful phrases. The result
of this parse is stored in a concept graph. It has the same
nodes as the underlying word graph, and its arcs are con-
cept instances found by the parser. Every word sequence
that can be parsed as a concept leads to a corresponding
concept arc. Figure 5 shows the concept graph that was
created from the word graph in figure 4.

Unparsable parts of the utterance lead to gaps in the
concept graph. This would make it impossible to extract
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Figure 5: Example concept graph.

the best path through the concept graph. Therefore, these
gaps are bridged by so-called filler arcs. In addition, a
filler arc is added in parallel to every concept arc as an
alternative interpretation, since a concept may have been
found only due to a recognition error.

Filler-word sequences actually serve a twofold purpose:
First, they allow avoiding complicated grammatical con-
structions as e.g. “Please, would you be so kind to connect
me to Mr. Jones,” where it is sufficient to spot the phrases
connect and Mr. Jones. Second, they do some out-of-
domain and out-of-vocabulary modelling by e.g. covering
phrases like “Connect me to Burger King.”

5.2 The Template Language Model

The language understanding component provides the tem-
plate language model P (WT IT ). We regard WT and IT

as a joint event to account for the variety of ways a certain
information item set can be expressed on the one hand and
the fact that multiple interpretations of a word sequence
may exist on the other hand – although this rarely hap-
pens in our task. If IT is not an interpretation of WT ,
P (WT IT ) is simply 0.

P (WT IT ) has a two-layer structure as described in [1].
As a result from the parsing process, every path through
the word graph becomes segmented into a sequence of con-
cepts and fillers. With C denoting such a concept/filler
segmentation, we can rewrite P (WT IT ) as:

P (WT IT ) =
∑
C

P (WT IT |C)P (C)

We decompose P (C) = P (c0, c1, ..., cN+1) into a bigram
model, and we assume that the conditional probability for
a ci’s partial word sequence (WT

ci , I
T
ci) only depends on ci:

P (WT IT ) = P (cN+1|cN )

·
N∏
i=1

P (WT
ci I

T
ci |ci)P (ci|ci−1)

where c0 and cN+1 refer to the sentence start and end, re-
spectively. Using an N -gram model to model the sequence
of concepts is in line with most traditional systems that
use context-free grammars or finite-networks for partial
parsing, (cf. [10, 16, 7]).

For regular concepts, P (WT
ci I

T
ci |ci) is provided by the

the rule probabilities of the concept grammar: Every rule
is assigned a probability that indicates how likely it is
to be applied given the left-hand side non-terminal. The
probability of a concept derivation is equal to the product
of the production probabilities of all rules applied to parse
this concept (cf. [6]).

For filler arcs, the language model score is provided by
a stochastic word-level bigram language model. Since the
fillers model those parts of the word graph outside the
concept grammar, we trained the filler bigram on those
parts of the training corpus that were not covered by the
grammar.

The template language model is implemented as fol-
lows: During the parse, each concept arc is assigned a
score which consists of the acoustic score of the concept’s
word sequences plus the grammar score. When the filler
arcs are added to the concept graph, each filler arc is as-
signed the score of the best word sequence from its start
to its end node (including the bigram score). The concept
bigram is applied later when we extract paths from the
concept graph.

5.3 Computing the Meaning

At the same time that the input is parsed top-down, the
meaning is computed in a bottom-up manner: Every non-
terminal can be assigned a set of attributes. Their values
are computed when the non-terminal is expanded using a
(syntactic) grammar rule. For each syntactic rule, there
may be semantic rules which determine how the values
of the attributes are computed from the attributes of the
non-terminals used on the right-hand side of the syntactic
rule.

Figure 6 shows example rules of our grammar. The val-
ues in parentheses are observation counts from the train-
ing corpus. The rule probabilities are estimated on these
counts.

<affiliation> ::= (61) in the <db_group> <dept>

group := <db_group>.group

<affiliation> ::= (83) of the <db_group> <dept>

group := <db_group>.group

<dept> ::= (127) group

<dept> ::= (32) department

// import group names from database

<db_group> ::= DATABASE("group") //terminals for ’group’

group := * //use terminal as attribute value

Figure 6: Example grammar rules.

The word lists and attributes of database-specific non-
terminals like <db_group> are not contained in the gram-
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mar but imported from the database, permitting to ex-
change the database without modifying or retraining the
grammar. Actually, we do not have to consult the
database to resolve these non-terminals, because database
terminals have been tagged during the automatic vocab-
ulary generation process (cf. section 4.4). The attribute
value is directly derived from the word itself.

5.4 Integrating the Database

As the last step to make the final decision for one sen-
tence hypothesis, the best path through the concept graph
has to be computed. If we had no further knowledge
sources, we could use a standard Viterbi algorithm to ex-
tract the best concept sequence from the concept graph.
However, in order to incorporate the database knowledge
(the goal’s prior distribution P (GDB)) and the consistency
constraints δI,S (dialogue history) and δI,I (consistency
within the interpretation itself), a more complex approach
has to be taken:

We use an N -best approach in which N , the number
of paths that have to be computed, does not have to be
known in advance, but the sentences hypotheses are com-
puted one after the other, sorted by their concept-graph
scores.

We start by extracting the first best path and update its
path score using the full model. Then we extract the next
best and rescore it, too. This is repeated over again until
we heuristically decide that the best sentence hypothesis
(the one with the best score according to the full model)
is expected to be included in the N best hypotheses we
have examined. To ensure real-time processing, we must
limit N to Nmax ≈ 50. If no consistent path was found
amongst the top Nmax hypotheses, we set Î = ∅.

Consistency with the Database

Consistency with the database is ensured by the a-priori
probability P (GDB): For an information item set I of a
sentence hypothesis that does not refer to at least one
existing database entry, P (GDB) will be 0, and therefore
the hypothesis can be rejected immediately.

The following example3 illustrates this. For all exam-
ples, we assume that ‘Martin Jones’ is a valid database
entry, whereas ‘Marvin Jones’ and ‘Martin Johnson’ are
not.

Best path:

I want the email of Marvin:fname Jones:name

3The examples have been translated from original German di-
alogues collected in the PADIS field test. Only the personal data
(e.g. the names) have been changed.

db query: last name: Jones
first name: Marvin

⇒ No database match: hypothesis gets rejected.

2nd best path:

I want the email of Martin:fname Jones:name
db query: last name: Jones

first name: Martin
⇒ Consistent.

Matching Rules

The consistency constraints δI,S and δI,I are implemented
by matching rules. In the following, we explain the rules
actually employed in our prototype.

Rule 1: Consistency Within Interpretation Itself
A hypothesized interpretation of the user’s response is only
accepted if it does not contain contradictory values for an
attribute (δI,I 6= 0). Example:

I want the email of Martin:fname John:fname

⇒ Two different values for the same item.

Rule 2: Match With System Prompt According to
δI,S , an interpretation that contains a correction of some
item not occurring in the system’s prompt is rejected. Ex-
ample:

System: Thus, you would like to talk to Mr. Jones?

Best path:

no not Johnson:name

⇒ Inconsistent with the system prompt.

...

4th best path:

no not Jones:name

⇒ Consistent and selected.

Rule 3: Match With System’s Belief Interpreta-
tions which, after combination with the system’s belief,
do not refer to a valid database entry are also rejected
according to δI,S . For example:

System: Which Martin would you like to talk to?

Best path:

Doctor:title Johnson:name please

db query: last name: Johnson
first name: Martin
title: Doctor

⇒ No database match.
2nd best path:

Doctor:title Jones:name please

db query: last name: Jones
first name: Martin
title: Doctor

⇒ Consistent and selected.
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N-best Algorithm

The procedure described above requires the N best con-
cept sequences to be extracted from the concept graph,
where N is not known in advance. A number of algo-
rithms have been developed for exact or approximate it-
erative generation of N -best hypotheses [19, 17]. We use
the exact algorithm described in [20], which was improved
to achieve a computational complexity linear in N .

As a preparation, the algorithm first performs a stan-
dard Viterbi optimization, i.e. for every concept arc, the
best partial path from the sentence beginning is computed,
and its partial score and backpointer are stored along with
the arc in the graph data structure. To extract the first
best path, one just has to find the best ending arc and
follow the backpointer chain. When looking for the next
best path, we do basically the same but avoid outputting
the first best again. In general, extracting the nth best
path while knowing the n − 1 best hypotheses is seen as
extracting the best path while excluding the n − 1 best
paths from search space.

We keep track of the n−1 best paths by storing them in
a compact backward tree. Figure 7 shows an example of a
concept graph and the corresponding backward tree after
extracting the n− 1 = 4 best sentences. When extracting
the next best hypothesis, we exploit the fact that it must
join the tree at some node (which may be the root node).
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Figure 7: Example of an N-best backward tree. The next
best path joins the tree via one of the serpentined arrows.
Now select the one that leads to the best total sentence
score.

Thus, to find the nth path, we determine at which node
it joins, and via which graph arc: for each currently exist-
ing tree node, we determine the best entering path (i.e. the
one leading to the best sentence score), and then select the
best one from all nodes. This selection is the nth best hy-

pothesis we are looking for. Finally, we add this path to
the backward tree to prepare for the next best.

The best path entering a certain tree node is found by
optimizing over all arcs entering the corresponding graph
node but skipping all arcs for which already a correspond-
ing tree arc exists, because these tree arcs represent one
or more of those n−1 best paths that we have to exclude.
The tree node and the entering graph arc define a sentence
hypothesis:

• The graph arc determines the head of the path, which
is the best partial path from sentence beginning. We
already know it (and its partial score) from the ini-
tial Viterbi optimization – just follow the backpointer
chain.

• The tree node determines the tail of the path (by its
parent arcs up to the tree root).

With this, computing the score of this whole sentence path
becomes inexpensive. It consists of three components, the
partial path score of the head, the concept-bigram transi-
tion score from the entering arc to the tree node’s parent
arc, and the partial path score of the tail (computed once
for every arc added to the tree).

This optimization has to be performed for every node in
the backward tree, which grows with every extracted hy-
pothesis. Thus, we obtain a computational complexity of
O(N2) for the extraction of N best sentences, as described
in [20]. However, for most nodes, the optimization result
does not change from n to n+1; only for tree nodes on the
path of the nth sentence hypothesis, the result may differ
when extracting the n+ 1st hypothesis. These redundant
computations can be avoided by performing this optimiza-
tion whenever adding a path to the backward tree, i.e. only
once for every node on this path. A similar strategy can
be followed in selecting the best joining node. The com-
putational effort for extracting the nth best sentence now
is in the order of magnitude of extracting the single best
sentence from a word graph, and N best hypotheses can
now be computed with linear complexity O(N).

6 Dialogue Control

The overall understanding task of the system is to find
the caller’s dialogue goal G, i.e to find out what per-
son (database entry) he is talking about and what service
(e.g. call completion or email address) is requested. For
the dialogue control module, this means that a number of
information slots in a query pattern have to be filled.

In each dialogue turn, the language understanding com-
ponent provides a set of information items which were ex-
tracted from the user’s last utterance. Since a single user

10



utterance usually does not contain all the information nec-
essary to provide the service, the system needs capabilities
to ask for missing information. In addition, the user must
be able to detect and correct possible understanding er-
rors. This calls for a dialogue between the system and the
user.

In PADIS, the system keeps prompting the user for miss-
ing information as long as a unique database entry cannot
be identified by the information collected from the user’s
previous utterances. Sometimes however, the user does
not know the information he is prompted for, but would
be able to give other information that could be used for
disambiguation. For example, the user cannot answer the
question for a person’s first name, but may know the de-
partment where this person is working. To handle such
cases, we need a flexible mixed-initiative dialogue strat-
egy rather than a rigid system-driven interaction. In our
system, the user can at any given time specify more or
different information than he is actually asked for.

The disambiguation strategy followed by the system in
order to get more specific information on what is requested
by the user is termed as slot filling. It was already used
in our previous train-timetable system [3], and works as
follows: The system maintains an ordered list of informa-
tion slots (last name, first name, group, etc.). It keeps
asking questions on the next item of this list as long as
further disambiguation is needed. E.g. knowing only the
first name elicits a question for the last name, then for
the group, and so on. This slot-filling strategy allowing
the user to freely specify information items is illustrated
in figure 8.

System: Hello, this is PADIS. How can I help you?
Caller: I’d like to talk to Mr. Anderson.
System: What is the first name of Mr. Anderson?
Caller: Uh, I don’t know — but I think he is working

somewhere in the administration.
System: So you want to talk to Mr. Paul Anderson

from the administration department?
Caller: Yes, sounds good.
System: . . .

Figure 8: Dialogue example demonstrating the system’s
slot-filling strategy.

In most cases, the user does not have to fill all slots
in the query pattern. He only has to provide enough
information to uniquely identify the desired service and
database entry. E.g. in some cases a first name may al-
ready uniquely specify a person, whereas in other cases
more information is needed. To avoid superfluous ques-
tions, in order to keep the dialogues as short as possible,
the dialogue component consults the telephone database
after each user turn to determine whether or not further
information has to be requested (cf. the example dialogue
in figure 1, where the first name Mike is already unique,

whereas Mary needs further disambiguation). This inte-
gration of the database into the dialogue control is very
efficient since it keeps the dialogues short while complex
disambiguation dialogues are still possible.

In an automated system, recognition errors may and do
occur. It is therefore important that the user has the pos-
sibility to detect and correct these errors before he may be
connected to the wrong party. In the PADIS system, the
information understood in the previous turn is repeated
in the next question (E.g.: What is the first name of
Mr. Jones?) The user may correct any incorrect infor-
mation. If no correction is made, the system considers
this information to be verified. This method is called im-
plicit verification. Only if no further information has to be
asked for, a pure confirmation question is asked (explicit
verification). These correction mechanisms are illustrated
in figure 9.

System: Hello, this is PADIS. How can I help you?
Caller: Mary White.
System: What is the first name of Mr. Wright?
Caller: No, I don’t want Mr. Wright, I would like to

talk to Mrs. Mary White.

System: So you want to talk to Mrs. Mary White?
Caller: Yes, you got it.
System: I connect you . . .

Figure 9: Dialogue example demonstrating the system’s
verification strategies: a) In turn 2, the wrongly recog-
nized Mr. Wright is stated for implicit verification and is
corrected by the user. b) In turn 3, the system explicitly
verifies Mrs. Mary White which is correct now.

Dialogue modelling in the PADIS application may at-
tain a considerable complexity. This is due to the following
facts: a) The user may specify the information slots in an
arbitrary order. b) An arbitrary number of slots may be
specified. c) The possible correction of misrecognized slots
by the user adds further complexity.

Designing the PADIS dialogue flow by means of graphs
or finite-state automata would result in impracticably
large networks and may even be infeasible for more com-
plex applications. Therefore, a special dialogue descrip-
tion language was developed [2], in which the task-specific
aspects like slot definitions, questions, and verification
phrases can be specified in a declarative way. The di-
alogue module itself incorporates the general knowledge
on how to conduct information-inquiry dialogues as the
slot-filling mechanism described above or the automatic
generation of verification questions [2]. This combination
of the built-in general dialogue strategy and a program-
ming language to describe the task specifics reduces the
complexity of a dialogue description and therefore makes
it possible to extend the functionality of an application or
to create a new application quite easily.
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7 Speech Output

In PADIS, communication between the user and the sys-
tem is a two-way process which requires the system to talk
to the user and not only vice versa. The dialogue descrip-
tion provides templates for phrases which can be used to
create system prompts. Those templates determine, for
example, how a certain slot is asked for, and how its con-
tent is formulated in implicit or explicit verifications.

In the information gathering dialogue, several of these
templates may be concatenated and filled with values from
the system’s current belief. In some cases, it turned out
to be necessary to include additional information from the
database in the confirmation prompt even if it was not pro-
vided by the user. E.g. rather than saying “So you want
to talk to White?”, we use “to Mrs. White” instead, even
if the user didn’t say “Mrs.”. This sounds more natural to
the caller. However, this feature has to be used with care:
We observed that users easily get confused if the system
comes up with something the user has not said, especially
if it is wrong due to recognition errors.

Specific templates also exist for the output of directory
information. They are filled with values from the respec-
tive listing. In addition, the dialogue description provides
phrases for greeting and meta-dialogue (e.g. “Do you want
any further information?”).

For the output of the prompts, PADIS concatenates pre-
recorded phrases. This sounds more natural than today’s
state-of-the-art speech synthesis systems and is still feasi-
ble for a relatively small database. For large and dynam-
ically changing databases however, this approach is not
practical any more, because for every new entry in the
database the corresponding phrases must be recorded.

8 Field Test

The PADIS system has been used in a field test in our lab
since March 1996. About 7000 dialogues were collected
between March and December 1996. Of these, about 6000
were transcribed and evaluated, corresponding to approx-
imately 7 hours of user speech. Table 2 summarizes the
most recent PADIS corpus.

Table 2: Characteristics of latest corpus.

no. of dialogues 6124
no. of turns 18112 (3.0 per dialogue)
no. of words 45987 (2.5 per turn)
time estimate 7h
no. of out-of-vocab. words 822 (1.8%)

8.1 Task Characteristics

The PADIS database contains about 600 subscriber en-
tries. A user may request phone, fax, email, and work
place location information on the one hand, and direct
call completion on the other hand.

The total vocabulary consists of 1526 words, most of
which are database terminal symbols, i.e. words that refer
to database entries (see section 4.4). Table 3 shows an
overview of the PADIS vocabulary.

Table 3: Composition of vocabulary.

word category # words percentage
last names 687
first names 304
genders 2
groups 121
sites 4
titles 2∑
database terminals 1120 73%

grammar words 139 9%
filler words 267 18%
total 1526 100%

8.2 System Performance

In the current system, more than 95% of the dialogues are
successful, i.e. in more than 95% of the calls, the users
finally get the service they request.

We made an offline evaluation of the system perfor-
mance for three setups:

• First, we used a traditional system without consis-
tency checks (a simple first-best system, no N-best
rescoring).

• In the next step, the first matching rule (consistency
within utterance) and database knowledge were used.

• Finally, all matching rules described above were ap-
plied.

The results given in this section were evaluated on an
earlier corpus (3512 dialogues), which was split into a
training and a test corpus as shown table 4. The acoustic
models have been trained on 12.1h of speech data from
our train schedule information system.

Table 5 shows the word error rate WER, the average
search depth n̄, the test-set perplexity PP, and detailed
information on the concept error rate CER for the test
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Table 4: PADIS field-test corpus characteristics.

Training Test
dialogues 2348(4.5h) 1164(1.5h)
turns 8214(3.5 per dial.) 3198(2.7 per dial.)
words 26445(3.2 per turn) 8743(2.7 per turn)

corpus. The concept error rate measures insertions, dele-
tions, and substitutions of the (attributed) concept se-
quence. The number of insertions, deletions and substi-
tutions for each setup is also shown. To show the effect
of the database integration, the substitutions were split
into attribute substitutions SAttr (the correct concept was
understood, but its attributes were wrong) and concept
substitutions SConc (a wrong concept was understood).
The average search depth n̄ is the rank of the selected
hypothesis in the N-best search and indicates how many
hypotheses were rejected until a consistent path through
the concept graph was found. The maximum search depth
Nmax in these experiments was 100.

In interpreting the error rates, it should be noted that
a dialogue can be successful even if some attributes are
misrecognized, e.g. a deletion of a first name when the
last name is unique.

By applying the within-turn constraints, a relative re-
duction by 17% in concept error rate, 15% in WER, and
35% in perplexity has been achieved. Attribute substitu-
tions have been reduced by 36%. Since the largest part of
the error reduction is due to rejecting hypotheses referring
to non-existing database entries, the gain perceived by the
users is much greater: Users turned out to be especially
annoyed if a non-existing person is understood, because
the computer “could have known”.

The additional use of the system’s belief and the current
question has only led to a slight improvement on CER and
has had nearly no effect on the WER. This is because the
effects of the dialogue history inevitably remain small in
dialogues consisting of just three turns on average. The
shortest possible dialogue already takes two turns: “How
can I help you? – Mr. Jones, please. – You want to talk
to Mr. Jones? - Yes.”

8.3 User Behaviour

Who is using the system?

If one wants to judge the usability of an automatic in-
quiry system, it is important to look at the people who use
the system. In our case, the callers are mainly employees
of the Philips research laboratories in Aachen/Germany.
Most of these users have academic degrees, most of them
with a technical background. Even though many of the
users of PADIS do not work in speech processing but in
fields like lighting or material science, many of them have

already used our automatic train timetable information
system [3].

How is the system used?

Although PADIS can also provide room numbers and
email addresses, it has mainly been used for call comple-
tion (91% of all calls). A number of users already use
PADIS regularly for their everyday business as a conve-
nient replacement of the written telephone lists and man-
ual dialing.

We examined the way that users talk to our system for
about 6000 dialogues. In particular, we concentrated on
the caller’s first utterance in each dialogue (immediately
after the system’s greeting) in which we assumed the caller
spoke according to his own preferences. In 57% of the calls,
the user gave the first and the last name of the desired
party, while in 36% (5%), the caller specified the last name
(first name) only.

One might expect humans talking to a machine to use
the simplest possible formulation, which would be first
name or form of address followed by the last name for con-
nection requests4. Interestingly however, we have found
this formulation in only 32% of the first dialogue utter-
ances. Most users preferred much more talkative formula-
tions: The average length of the first dialogue utterances
is 3.8 words. In over 30%, “please” was used. 28% of the
utterances contain phrases like “I’d like to”.

Although these figures might be somewhat biased due to
our caller sample, it seems that if users are not restricted
by the system, they prefer to talk the same way they would
talk to a human, despite the extra verbiage. However, if
we compare these results to the numbers derived on an
earlier corpus [9], we find that the users were even more
talkative when the field test started. This might indicate
the trend that users are going to develop a new concise
style to give their commands to the machine.

System prompts and dialogue efficiency

The duration or conciseness of the system prompts
elicited the widest range of disagreement among users.
Novice users liked the system to introduce itself and ex-
plain its features, while especially frequent users mainly
wanted a short dialogue and thus demanded very short
system prompts without lengthy explanations. (Some of
them actually requested replacing the greeting phrase by a
simple beep.) This would, however, confuse novices com-
pletely.

As a compromise, we used a short guiding question for
the greeting (such as “How can I help you ?”) and kept
the confirmation prompts as short as possible. To further
optimize dialogue duration for call-completion requests,

4If the caller does not ask for a particular service, the system
assumes that a connection is requested.
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Table 5: Results on the PADIS field-test corpus.

Setup PP n̄ WER SubAttr SubConc Ins Del CER
First best 25.1 1.0 28.9% 768 441 271 527 33.4%
Consistency within turn 16.2 3.2 24.6% 487 429 231 541 27.8%
Full model n/a 3.8 24.4% 476 375 240 544 26.9%
Relative Gain (35%) 15% 38% 15% 11% -3% 19%

the system does not output the number of the desired
party when transferring a call. The user is only given the
telephone number if the line is busy.

Another possibility of further improving dialogue effi-
ciency would be to get rid of the need to verify every in-
formation item. We have been investigating confidence
measures for information items to be able to suppress ver-
ification questions for reliably recognized items. However,
this technique was not used in the experiment presented
here.

Randomized prompts

A simple means of making the system more pleasant is
to randomly select system prompts from a set of alterna-
tive formulations. Since we have applied this technique for
the greeting, users have experienced the system as “more
vivid” or “less boring”. We intend to extend this principle
to the most frequent prompts and confirmation questions.

How to handle inconsistent information?

As mentioned earlier, users find inconsistent informa-
tion as in Mrs. Mike White unacceptable. In general, the
integration of database constraints avoids this problem.
However, in some cases (e.g. when encountering heavy
background talk) the system may not be able to iden-
tify any sensible interpretation at all in the word graph.
In an early version, we selected the highest scoring in-
terpretation (still violating the database constraints) and
presented the user with a corresponding clarification ques-
tion. However, our experiences have shown that in this
case it is better to entirely discard the utterance and re-
formulate the question.

9 Conclusions

In this paper we have presented the Philips automatic di-
rectory information and exchange board system PADIS.
We have derived a stochastic framework for speech recog-
nition and language understanding which incorporates
database knowledge and dialogue history. The result-
ing decision rule is implemented in a multi-stage process,
where in each stage, the search space is reduced while ad-
ditional knowledge sources are employed.

The new decision rule improved the concept error rate,
which measures understanding accuracy, by 19%. In par-

ticular, attribute substitution errors, which are the most
annoying for the user, was reduced by 38%. We believe
that using a method of this type will become even more
essential if a much larger database is used.

The mixed-initiative dialogue of PADIS, which also inte-
grates the database in order to keep the dialogues as short
as possible, enables the user to access an entry in the tele-
phone database even though he may not know some of the
information he is asked for.

We have reported results on a field test of the system
which has been conducted in our research lab. Our data
suggest that users like the opportunity to speak naturally
to our automatic system. Despite the difficulties inher-
ent in understanding unrestricted natural language, our
system achieved a dialogue success rate of about 95%.
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