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ABSTRACT

In the course of a (man-machine) dialogue, the system’s be-
lief concerning the user’s intention is continuously being built
up. Moreover, restricting the discourse to a narrow applica-
tion domain further constrains the variety of possible user
reactions. In this paper, we will show how these knowledge
sources may be utilized in a stochastic framework to improve
speech understanding. On field-test data collected with our
automatic exchange board prototype PADIS1, a relative re-
duction of attribute errors by 27% has been obtained.

1. INTRODUCTION

In an automatic inquiry system, the computer conducts a
dialogue to find out the user’s dialogue goal. It then carries
out the desired action, which is typically to perform some
transaction on a certain entry of a database. For example,
in an automatic exchange board system, the user’s dialogue
goal could be to be connected to some person specified by
name. The system would have to find out which person, and
that call completion is desired. It would then retrieve the
phone number from the database and transfer the call.

In state-of-the-art systems, domain knowledge is incorpo-
rated into the speech recognizer by a word-level language
model, which is typically a hybrid of a phrase and/or word
N -gram and a stochastic context-free grammar [1] or a finite-
state network [2, 3, 4]. Common to systems of this type is
that the word-level model actually models not only the a-
priori probabilities of word sequences, but also, implicitly,
the distribution of the dialogue goals.

When designing our automatic exchange board system, we
found some useful long-span constraints. For instance, we
can exploit that a cooperative user will never intentionally
ask for combinations of first and last name and/or affiliation
that do not refer to an existing database entry. However,
these constraints cannot be captured by the word-level mo-
dels described above, but must be modelled separately (they
may even span across multiple dialogue turns).

The PADIS prototype is based on the Philips automatic
inquiry system [5], which understands natural-language re-
quests in fluently spoken continuous speech over the tele-

1Philips Automatic Directory Information System

phone and conducts a mixed-initiative dialogue. We have
extended this system to directly incorporate

• an explicit a-priori distribution of the user’s dialogue
goal (as far as separable from the word-level model),

• dependencies on the prompt presented to the user, and

• dependencies on the items already stated (or at least
the system’s belief on that)

into our maximum-a-posteriori (MAP) criterion. This leads
to a significant improvement in understanding accuracy and
has the practical advantage that the database can be ex-
changed or maintained without language-model retraining.

2. PROBABILISTIC FRAMEWORK

Our system is based on a speech production model as de-
picted in figure 1. The user has a certain dialogue goal G
in talking to the system (which we regard constant during a
dialogue since we assume a cooperative user).
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Figure 1: Production model of a user’s utterance.

In every utterance, the user states a set of information items
I, which is determined by G and the current dialogue state
S. S includes the system’s current question and the system’s
current belief on what has already been stated by the user.
It can be directly observed, while G is a hidden variable. I
is then cast into a sequence of words W and finally observed



by our system as a sequence of acoustic feature vectors O.
The symbols are summarized in table 1.

Note that the user’s goal G and the dialogue state S are
indeed not independent of each other but coupled via the
information collected in previous turns.

Table 1: Summary of symbols with examples.

Sym. Explanation Example

G dialogue goal { talk to S. White }
GLM LM-modelled part { talk to }
GDB DB-modelled part { S. White }
S system status current belief = { Sally }

question = Which Sally ?
W word sequence give me Doctor White please

WT word seq. templ. give me <title> <name> please

I inform. item set { @req=connect, @title=Doctor,
@name=White }

IT inform. template { @req=connect, @title=<title>,
@name=<name> }

O acoustic obs. (observed feature vectors)

2.1. MAP Criterion for Speech Under-
standing

We define the speech understanding task as finding the in-
formation item set Î which most probably generated our
acoustic observation O, given the system’s current state S
(maximum-a-posteriori criterion):

Î = arg max
I
P (I|SO) (1)

= arg max
I

∑
W,G

p(OWISG)

= arg max
I

∑
W

p(O|W ) ·
∑
G

P (WISG)

where W is the underlying word sequence and G the (un-
known) dialogue goal. We make the model assumption that
P (WISG) is 0 for all I inconsistent with S or itself, but oth-
erwise independent of S and thus proportional to P (WIG):

P (WISG) = P (WIG) · δI,S δI,I · α (2)

δX,Y =

{
1 if X is consistent with Y
0 otherwise

(α is a normalization constant which is independent of I,
and can be ignored since it does not contribute to the max-
imization). As a simplification, we replace the sum over W
by the maximum2and obtain:

Î = arg max
I

{
max
W

p(O|W ) ·
∑
G

P (WIG) · δI,S δI,I
}

2.2. Modelling the Goal’s Distribution
We decompose the goal G into two parts (subsets) which
have to be evaluated differently: the language-model goal
GLM and the database goal GDB . They are disjoint, and
their priors are assumed to be independent, i.e.

P (G) = P (GLM ) · P (GDB) (3)

∑
G

P (WIG) =
∑
G

P (WI|G)P (G)

=
∑
G

P (WI|GLMGDB)P (GLM )P (GDB)

The language-model goal GLM is the part of the goal for
which the prior P (GLM ) is not explicitly available but im-
plicitly modelled by the language model. If, for example, the
goal G is to talk to a certain person, GLM would be { get
connected to some subscriber }. We get:∑

G

P (WIG) =
∑
G

P (WIGLM |GDB) · P (GDB)

=
∑
GDB

P (WI|GDB) · P (GDB)

On the other hand, for the database goal GDB , the a-priori
distribution P (GDB) is explicitly available. P (GDB) reflects
how often a person is asked for, and is 0 for non-existing
database entries.

The language model, however, still models the sentence
structure. For example, it does not model whom to talk to,
but how the person is specified: by first and last name, by
title and last name, by first name only, etc.

Thus, the language model provides a-priori probabilities
only for word-sequence and information-item templates, in
which all GDB-related words are replaced by a placeholder
(e.g. “I want to talk to <fname> <name>”). WT and IT

denote the templates for W and I, respectively. Thus,∑
G

P (WIG) =
∑
GDB

P (WIWT IT |GDB) · P (GDB)

= P (WT IT ) ·
∑
GDB

δWI,GDB · P (GDB),

because for every (WT , IT , GDB) there is exactly one (W, I),
and P (WT IT ) can be assumed independent of GDB (since
all GDB are of the same type). P (WT IT ) is estimated and
evaluated by a stochastic grammar without further splitting
into WT and IT , like in [1].

2.3. Decision Rule

We obtain the final decision rule:

Î ≈ arg max
I

{
max
W

p(O|W )︸ ︷︷ ︸
acoustics

·P (WT IT )︸ ︷︷ ︸
grammar

(4)

·
∑
GDB

δWI,GDB · P (GDB)︸ ︷︷ ︸
database knowledge

· δI,S δI,I︸ ︷︷ ︸
consistency
constraints

}

2The maximization over W can actually be restricted to word
sequences whose interpretation is I, because for all other W ,
P (WIG) is zero.



3. IMPLEMENTATION
To allow for an economic usage of CPU resources, our system
uses a multistage approach to implement the decision rule.
From stage to stage, the number of alternative hypotheses
to consider becomes less, while the model becomes more and
more complex.

3.1. Speech Recognition
The first stage is a speech recognizer as described in [6]: The
word-hypotheses generator uses the acoustic model p(O|W )
and a word-unigram language model to identify and score
plausible word hyptheses. The word-graph optimizer then
combines them, using a bigram, into a pruned word graph,
which is the output of this stage. A word graph is a compact
representation of plausible alternative sentence hypotheses.
Every path through the graph is a sentence hypothesis.

3.2. Natural Language Processing
In this stage, the word graph is parsed with an attributed
stochastic grammar and converted into an information graph
(see [1]). It represents all possible interpretations of the
paths through the word graph. The grammar provides
the language-model probability P (WT IT ) for every path
through the information graph, implicitly incorporating
P (GLM ).

3.3. N-Best Rescoring
In the third stage, the decision on the most likely Î is taken,
considering the database goal’s a-priori distribution P (GDB)
and the consistency constraints δI,S and δI,I . We employ the
N-best algorithm described in [7]. Its special feature is that
N does not have to be known in advance, but the N best
sentences can be computed one after the other, sorted by
their scores delivered by the third stage.

Every sentence hypothesis gets rescored using the full model,
where inconsistent paths or paths not referring to valid
database entries are immediately rejected. The N-best search
stops if the most likely hypothesis is expected to have been
considered. To retain real-time operation, it also stops if no
consistent path can be found amongst the top Nmax = 100
hypotheses. In this case, the result is the empty set Î = ∅.

Consistency with the Database
Consistency with the database is ensured by the a-priori
probability P (GDB): For an information item set I of a sen-
tence hypothesis that does not refer to at least one existing
database entry, P (GDB) will be 0, and therefore the hypoth-
esis is rejected.

The following example3illustrates this (Marvin Jones is a
valid database entry, whereas Martin Jones is not). The
notation Martin:fname means that the attribute fname (first
name) was assigned the value Martin by the grammar.

Best path:
I want to talk to Martin:fname Jones:name please

db input: last name: Jones
first name: Martin

⇒ No database match: hypothesis gets rejected.

2nd best path:
I want to talk to Marvin:fname Jones:name please

db input: last name: Jones
first name: Marvin

⇒ Consistent.
This path is selected.

Matching Rules

The consistency constraints δI,S and δI,I are implemented
by matching rules. In the following, we explain the rules
actually employed in our prototype.

Rule 1: Consistency Within Interpretation Itself

A hypothesized interpretation of the user’s response is only
accepted if it does not contain contradictory values for an
attribute (δI,I 6= 0), e.g. two different names.

Rule 2: Match With System Prompt

According to δI,S , an interpretation that contains a correc-
tion of some item not occurring in the system’s prompt is
rejected. Example:

System: Thus, you would like to talk to Mr. Jones?

Best path:
no not Johnson:name

⇒ Inconsistent with the system prompt.
...

4th best path:
no not Jones:name

⇒ Consistent and selected.

Rule 3: Match With System’s Belief

Interpretations which, after combination with the system’s
belief, do not refer to a valid database entry are also rejected
according to δI,S . For example:

System: Which Martin would you like to talk to?

Best path:
Doctor:title Daves:name please

db input: last name: Daves
first name: Martin
title: Doctor

⇒ No database match.
2nd best path:
Doctor:title Davis:name please

db input: last name: Davis
first name: Martin
title: Doctor

⇒ Consistent and selected.

4. EXPERIMENTAL RESULTS

A quantitative evaluation of the methods described above
was carried out using field-test data from our PADIS proto-
type.

3The examples are translations of original German dialogues
collected in the PADIS field test. Only the personal data (e.g. the
names) have been exchanged for obvious reasons.



4.1. System Overview

The PADIS system provides telephone and room numbers,
e-mail addresses, some private phone numbers, and direct
call completion. It understands natural-language requests in
fluently spoken German. A setup with a 500-entry database
has successfully been field-tested in our research laboratory
since early 1996. The vocabulary of the system contains
around 1400 words, and the dialogue success rate is 90%.

I/O Control

SpeechLanguage
Understanding

Speech
Recognition

Dialogue
Control Output

Database

Figure 2: The PADIS signal-processing pipeline.

Figure 2 gives an overview of the system architecture. A
more detailed description can be found in [8].

4.2. Results

We have evaluated the system performance for three setups:

• First, we used a traditional system without consistency
checks (a simple first-best system, no N-best rescoring).

• In the next step, the first matching rule (consistency
within utterance) and database knowledge were used.

• Finally, all matching rules described above were applied.

Table 2 contains the details of the corpora used for test-
ing and grammar training. The acoustic models have been
trained on 12.1h of speech data from our train schedule in-
formation system [5].

Table 2: PADIS field-test corpus characteristics.

Training Test

#Dialogues 2348 (4.5h) 1164 (1.5h)

#Turns 8214 (3.5 per dial.) 3198 (2.7 per dial.)

#Words 26445 (3.2 per turn) 8743 (2.7 per turn)

Table 3 gives the word error rate (WER), the attribute error
rate (AER; measures substitutions, insertions, and deletions
of information items), the average rank n̄ of the selected
hypothesis in the N-best list, and the test-set perplexity PP.

By applying the within-turn constraints, a relative reduction
by 23% in attribute error rate, 15% in WER, and 35% in per-
plexity has been achieved. Since the lion share comes from
rejecting hypotheses referring to non-existing database en-
tries, the gain perceived by the users is much greater: Users
turned out to be especially annoyed if a non-existing person
is understood, because the computer ‘could have known’.

Table 3: Results on the PADIS field-test corpus.

Setup WER AER n̄ PP

First best 28.9% 40.5% 1.0 25.1
Consistency within turn 24.6% 31.0% 3.2 16.2
Full model 24.4% 29.5% 3.8 –

The additional use of the system’s belief and the current
question has only led to a slight improvement on AER and
has nearly had no effect on the WER. This is because the
effects of the dialogue history inevitably remain small in dia-
logues consisting of just 2.7 turns an average. The minimum
dialogue already takes two turns: “How can I help you? –
Mr. Jones, please. – You want to talk to Mr. Jones? - Yes.”

5. CONCLUSIONS AND OUTLOOK
We have presented an extended stochastic formulation of the
speech understanding task that directly incorporates con-
straints from the inquiry system’s database and the dialogue
history. Using a 500-entry database, a total relative reduc-
tion of attribute errors by 27% and of word errors by 16%
has been obtained. We believe that our method also enables
us to build working systems with much larger databases.

Aside from extending the database, our future work will fo-
cus on model refinements. We expect the largest improve-
ment from modelling the dependency of W and I on the
current question’s type, which is not yet regarded in eq. 2.
Another topic will be adapting the a-priori probability of
items that have been negated by the user in previous turns.
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